Background: Brucellosis is an endemic disease in the Inner Mongolia Autonomous Region of China and Ulanqab exhibits the highest prevalence of brucellosis in this region. Due to the complex nature of Brucellosis, a cure for this disease has proven to be elusive. Furthermore, the reduced susceptibility of Brucella spp. to antimicrobial agents has been reported as a potential cause of therapeutic failure. However, detailed in vitro antimicrobial susceptibility patterns pertaining to Brucella isolates from this region have not yet been published. The aim of this study was to evaluate the antibiotic susceptibility profile of Brucella melitensis clinical isolates from Ulanqab, Inner Mongolia, China.
Methods: A total of 85 B. melitesis isolates were obtained from humans in Ulanqab of Inner Mongolia, China; the antimicrobial susceptibility of 85 clinical isolates to nine antibiotics was assessed using the E-test method according to the CLSI (Clinical and Laboratory Standards Institute) guidelines.
Results: All of the tested isolates were susceptible to minocycline, sparfloxacin, doxycycline, tetracycline, ciprofloxacin, gentamicin and levofloxacin. Resistance to rifampin and cotrimoxazole was observed in 1.0% (1/85) and 7.0% (6/85) of the isolates, respectively. However, rpoB gene mutations were not observed in single isolates exhibiting resistance to rifampin.
Conclusions: We observed that B. melitensis isolates are susceptible to the majority of the tested antibiotics. Furthermore, minocycline and sparfloxacin exhibited extremely high bactericidal effects in relation to the B. melitensis isolates. The sensitivity of commonly used drugs for the treatment of brucellosis should be regularly monitored. To the best of our knowledge, this is the first report of rifampin and cotrimoxazole resistant isolates of B. melitensis in China. In summary, based on the findings from this study, we suggest that antibiotic administration and use should be rationalized to prevent future drug resistance.
Keywords: Antimicrobial susceptibility; Brucella melitensis, brucellosis; Inner Mongolia; Ulanqab.