It has been well known that androgen receptor (AR) is critical to prostate cancer development and progression. It has also been documented that AR is expressed in more than 60% of breast tumors, which promotes the growth of estrogen receptor-negative (ER-)/AR-positive (AR+) breast cancer cells. Thus, AR might be a potential therapeutic target for AR-positive/ER-negative breast cancer patients. Previously we reported that in prostate cancer cells proteasome-associated deubiquitinase ubiquitin-specific protease 14 (USP14) stabilized AR protein level by removing its ubiquitin chain. In the current study, we studied the USP14-AR protein interaction and cell proliferation status after USP14 reduction or inhibition in breast cancer cells, and our results support the conclusion that targeting USP14 is a novel strategy for treating AR-responsive breast cancer. We found that inhibition of USP14 accelerated the K48-ubiquitination and proteasome-mediated degradation of AR protein. Additionally, both genetic and pharmacological inhibition of USP14 significantly suppressed cell proliferation in AR-responsive breast cancer cells by blocking G0/G1 to S phase transition and inducing apoptosis. Moreover, AR overexpression inhibited USP14 inhibition-induced events, suggesting that AR deubiquitination by USP14 is critical for breast cancer growth and USP14 inhibition is a possible strategy to treat AR-positive breast cancer.