Salusin- β Is Involved in Diabetes Mellitus-Induced Endothelial Dysfunction via Degradation of Peroxisome Proliferator-Activated Receptor Gamma

Oxid Med Cell Longev. 2017:2017:6905217. doi: 10.1155/2017/6905217. Epub 2017 Nov 19.

Abstract

The pathophysiological mechanisms for vascular lesions in diabetes mellitus (DM) are complex, among which endothelial dysfunction plays a vital role. Therapeutic target against endothelial injury may provide critical venues for treatment of diabetic vascular diseases. We recently identified that salusin-β contributed to high glucose-induced endothelial cell apoptosis. However, the roles of salusin-β in DM-induced endothelial dysfunction remain largely elusive. Male C57BL/6J mice were used to induce type 2 diabetes mellitus (T2DM) model. Human umbilical vein endothelial cells (HUVECs) were cultured in high glucose/high fat (HG/HF) medium. We demonstrated increased expression of salusin-β in diabetic aortic tissues and high-glucose/high-fat- (HG/HF-) incubated HUVECs. Disruption of salusin-β by shRNA abrogated the reactive oxygen species (ROS) production, inflammation, and nitrotyrosine content of HUVECs cultured in HG/HF medium. The HG/HF-mediated decrease in peroxisome proliferator-activated receptor γ (PPARγ) expression was restored by salusin-β shRNA, and PPARγ inhibitor T0070907 abolished the protective actions of salusin-β shRNA on endothelial injury in HG/HF-treated HUVECs. Salusin-β silencing obviously improved endothelium-dependent vasorelaxation, oxidative stress, inflammatory response, and nitrative stress in diabetic aorta. Taken together, our results highlighted the essential role of salusin-β in pathological endothelial dysfunction, and salusin-β may be a promising target in treatment of vascular complications of DM.

MeSH terms

  • Animals
  • Diabetes Mellitus, Experimental / complications*
  • Diabetes Mellitus, Experimental / metabolism
  • Diabetes Mellitus, Experimental / pathology
  • Diabetes Mellitus, Type 2 / complications*
  • Diabetes Mellitus, Type 2 / metabolism
  • Diabetes Mellitus, Type 2 / pathology
  • Diet, High-Fat / adverse effects
  • Human Umbilical Vein Endothelial Cells / metabolism
  • Human Umbilical Vein Endothelial Cells / pathology*
  • Humans
  • Intercellular Signaling Peptides and Proteins / chemistry
  • Intercellular Signaling Peptides and Proteins / genetics
  • Intercellular Signaling Peptides and Proteins / metabolism*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • NF-kappa B / metabolism
  • Oxidative Stress
  • PPAR gamma / metabolism*
  • Reactive Oxygen Species / metabolism
  • Vascular Diseases / etiology
  • Vascular Diseases / metabolism
  • Vascular Diseases / pathology*

Substances

  • Intercellular Signaling Peptides and Proteins
  • NF-kappa B
  • PPAR gamma
  • Reactive Oxygen Species
  • TOR2A protein, human