Prevalence and Source of Fecal and Oral Bacteria on Infant, Child, and Adult Hands

mSystems. 2018 Jan 16;3(1):e00192-17. doi: 10.1128/mSystems.00192-17. eCollection 2018 Jan-Feb.

Abstract

Modern hygienic practices are applied to avoid exposure to pathogens that spread via fecal-oral transmission. Despite this, the gastrointestinal tract is quickly colonized by fecal microbes. The hands are an important vector for the transmission of microbes, but the frequency at which fecal and oral microbes exist on hands and the source of those microbes have not been extensively described. Using data from a previous study that characterized the fecal, oral, and skin microbiota from 73 families, we found a significant incidence of fecal and oral microbes on hands. Of palms, 48.9% had fecal signal and 67.2% had oral signal. Fecal, oral, and forehead microbes were tracked to family members and an individual's own palms far more often than to unrelated individuals and showed relationships with age, gender, and parental status. For instance, oral microbes that were specifically sourced to the same individual (oneself) were most common on infant palms; mothers had more infant-child-sourced and oral-sourced microbes on their palms than nonparents. Fecal microbes on palms more often sourced to members of the family than unrelated individuals, but more often to other members of the family than oneself. This study supports that the hands are an important vector for the transfer of fecal and oral microbes within families. IMPORTANCE Bacteria live all around us, and we are constantly exposed to them during our everyday lives. Modern standards of hygiene aim to limit exposure to fecal bacteria, and yet bacteria rapidly colonize the gut in early life and following antibacterial treatment. Exposures to fecal and oral microbes provide risk of disease, but are also necessary since commensal microbes play important roles in health. This work establishes that bacteria of both fecal and oral origins are commonly found on hands. It also establishes that the uniqueness of fecal and oral bacterial communities across people can allow for determination of the likely individual from whom the fecal and oral bacteria came. These techniques allow for understanding the hands as a vector for microbial transmission within families and across populations, which has important implications for public health.

Keywords: computational biology; human microbiome; microbial ecology.