Associations between ambient air pollution and daily mortality in a cohort of congestive heart failure: Case-crossover and nested case-control analyses using a distributed lag nonlinear model

Environ Int. 2018 Apr:113:313-324. doi: 10.1016/j.envint.2018.01.003. Epub 2018 Feb 1.

Abstract

Background: Persons with congestive heart failure may be at higher risk of the acute effects related to daily fluctuations in ambient air pollution. To meet some of the limitations of previous studies using grouped-analysis, we developed a cohort study of persons with congestive heart failure to estimate whether daily non-accidental mortality were associated with spatially-resolved, daily exposures to ambient nitrogen dioxide (NO2) and ozone (O3), and whether these associations were modified according to a series of indicators potentially reflecting complications or worsening of health.

Methods: We constructed the cohort from the linkage of administrative health databases. Daily exposure was assigned from different methods we developed previously to predict spatially-resolved, time-dependent concentrations of ambient NO2 (all year) and O3 (warm season) at participants' residences. We performed two distinct types of analyses: a case-crossover that contrasts the same person at different times, and a nested case-control that contrasts different persons at similar times. We modelled the effects of air pollution and weather (case-crossover only) on mortality using distributed lag nonlinear models over lags 0 to 3 days. We developed from administrative health data a series of indicators that may reflect the underlying construct of "declining health", and used interactions between these indicators and the cross-basis function for air pollutant to assess potential effect modification.

Results: The magnitude of the cumulative as well as the lag-specific estimates of association differed in many instances according to the metric of exposure. Using the back-extrapolation method, which is our preferred exposure model, we found for the case-crossover design a cumulative mean percentage changes (MPC) in daily mortality per interquartile increment in NO2 (8.8 ppb) of 3.0% (95% CI: -0.4, 6.6%) and for O3 (16.5 ppb) 3.5% (95% CI: -4.5, 12.1). For O3 there was strong confounding by weather (unadjusted MPC = 7.1%; 95% CI: 1.7, 12.7%). For the nested case-control approach the cumulative MPC for NO2 in daily mortality was 2.9% (95% CI: -0.9, 6.9%) and for O3 7.3% (95% CI: 3.0, 11.9%). We found evidence of effect modification between daily mortality and cumulative NO2 and O3 according to the prescribed dose of furosemide in the nested case-control analysis, but not in the case-crossover analysis.

Conclusions: Mortality in congestive heart failure was associated with exposure to daily ambient NO2 and O3 predicted from a back-extrapolation method using a land use regression model from dense sampling surveys. The methods used to assess exposure can have considerable influence on the estimated acute health effects of the two air pollutants.

Keywords: Ambient air pollution; Case-crossover; Cohort study; Congestive heart failure; Mortality; Nested case-control; Nitrogen dioxide; Ozone.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aged, 80 and over
  • Air Pollutants
  • Air Pollution / adverse effects*
  • Case-Control Studies
  • Cities / statistics & numerical data
  • Cohort Studies
  • Cross-Over Studies
  • Female
  • Heart Failure / mortality*
  • Humans
  • Male
  • Nitrogen Dioxide / adverse effects*
  • Nonlinear Dynamics
  • Ozone / adverse effects*
  • Quebec / epidemiology
  • Seasons
  • Weather

Substances

  • Air Pollutants
  • Ozone
  • Nitrogen Dioxide