More than 15 petabases of raw RNAseq data is now accessible through public repositories. Acquisition of other 'omics data types is expanding, though most lack a centralized archival repository. Data-reuse provides tremendous opportunity to extract new knowledge from existing experiments, and offers a unique opportunity for robust, multi-'omics analyses by merging metadata (information about experimental design, biological samples, protocols) and data from multiple experiments. We illustrate how predictive research can be accelerated by meta-analysis with a study of orphan (species-specific) genes. Computational predictions are critical to infer orphan function because their coding sequences provide very few clues. The metadata in public databases is often confusing; a test case with Zea mays mRNA seq data reveals a high proportion of missing, misleading or incomplete metadata. This metadata morass significantly diminishes the insight that can be extracted from these data. We provide tips for data submitters and users, including specific recommendations to improve metadata quality by more use of controlled vocabulary and by metadata reviews. Finally, we advocate for a unified, straightforward metadata submission and retrieval system.
Keywords: Meta-analysis; Metabolomics; Metadata; Orphan genes; Transcriptomics; ’Omics.
Copyright © 2017 Elsevier B.V. All rights reserved.