Purpose: Despite therapeutic improvements, all patients with nonresectable metastatic colorectal cancer (mCRC) acquire resistance to treatment probably due to the growth of mutated clones. In contrast to tissue-based studies, liquid biopsies have enabled the opportunity to reveal emerging resistance to treatment by detecting mutated clones and noninvasively monitoring clonal dynamics during therapy.
Methods: The courses of three patients with mCRC who were initially RAS wild-type were monitored longitudinally using liquid biopsy with long-term follow-up of up to 20 sequential samples. Detection of fragmented RAS mutated circulating cell-free DNA (cf)DNA in plasma was performed by BEAMing. In addition, plasma digital droplet PCR was used to detect and quantify BRAF and PIK3CA mutated cfDNA. Changes of mutational load were correlated with imaging data.
Results: A combination of liquid biopsy and radiological imaging enabled visualization of the occurrence of clonal redistribution after discontinuation of anti-EGFR mAb therapy, as well as emerging RAS mutations during therapy with anti-EGFR mAb indicating resistance. Furthermore, we found that growth of RAS mutated clones is independent of direct selective pressure by anti-EGFR therapy, which is a significant and new finding of this study.
Conclusions: Our findings demonstrated the whole spectrum of clonal selection and redistribution of mutated cell clones leading to acquired resistance. Given our observation that the growth of RAS mutated clones can evolve even in the absence of anti-EGFR mAb therapy, there is a clear imperative to monitor RAS mutations in serial blood draws in all RAS wild-type patients in general and independent of the therapy.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.