Background: We carried out a systematic review and meta-analysis with the aim to evaluate the efficacy of longacting bronchodilators on exercise capacity in COPD patients.
Methods: The endpoints were the efficacy of long-acting bronchodilators (altogether, and by single classes) vs. placebo in modifying endurance time (ET), inspiratory capacity (IC) and dyspnea during exercise, taking into consideration the outcomes according to different patients’ inclusion criteria and exercise methodology.
Results: Twenty-two studies were deemed eligible for analysis. Weighted mean increase in ET resulted of 67 s (95% CI ranges from 55 to 79). For isotime IC and dyspnea during exercise, weighted improvements were 195 ml (162–229), and − 0.41 units (− 0.56 to − 0.27), respectively. The increase in trough IC was 157 ml (138–175). We found a trend in favour of LAMA compared to LABA in terms of ET. In the 11 studies which reported a value of functional residual capacity > 120% as inclusion criterion, weighted mean increase in endurance time was 94 s (65 to 123); however we did not find any significant correlation between ET and mean trough IC (P: 0.593). The improvement of ET in the 5 studies using walking as exercise methodology resulted of 58 s (− 4 to 121).
Conclusions: Long-acting bronchodilators improve exercise capacity in COPD. The main effect of long-acting bronchodilators seems to be a increase of basal IC rather than a modification of dynamic hyperinflation during exercise. The efficacy in terms of endurance time seems higher in studies which enrolled patients with hyperinflation, with a similar efficacy on walking or cycling.
Background: We carried out a systematic review and meta-analysis with the aim to evaluate the efficacy of long-acting bronchodilators on exercise capacity in COPD patients.
Methods: The endpoints were the efficacy of long-acting bronchodilators (altogether, and by single classes) vs. placebo in modifying endurance time (ET), inspiratory capacity (IC) and dyspnea during exercise, taking into consideration the outcomes according to different patients’ inclusion criteria and exercise methodology.
Results: Twenty-two studies were deemed eligible for analysis. Weighted mean increase in ET resulted of 67 s (95% CI ranges from 55 to 79). For isotime IC and dyspnea during exercise, weighted improvements were 195 ml (162–229), and − 0.41 units (− 0.56 to − 0.27), respectively. The increase in trough IC was 157 ml (138–175). We found a trend in favour of LAMA compared to LABA in terms of ET. In the 11 studies which reported a value of functional residual capacity > 120% as inclusion criterion, weighted mean increase in endurance time was 94 s (65 to 123); however we did not find any significant correlation between ET and mean trough IC (P: 0.593). The improvement of ET in the 5 studies using walking as exercise methodology resulted of 58 s (− 4 to 121).
Conclusions: Long-acting bronchodilators improve exercise capacity in COPD. The main effect of long-acting bronchodilators seems to be a decrease of basal IC rather than a modification of dynamic hyperinflation during exercise. The efficacy in terms of endurance time seems higher in studies which enrolled patients with hyperinflation, with a similar efficacy on walking or cycling.
Keywords: Bronchodilator; COPD; Exercise.