Protective Effect of Isoliquiritigenin against Ethanol-Induced Hepatic Steatosis by Regulating the SIRT1-AMPK Pathway

Toxicol Res. 2018 Jan;34(1):23-29. doi: 10.5487/TR.2018.34.1.023. Epub 2018 Jan 15.

Abstract

Ethanol-induced fat accumulation, the earliest and most common response of the liver to ethanol exposure, may be involved in the pathogenesis of liver diseases. Isoliquiritigenin (ISL), an important constituent of Glycyrrhizae Radix, is a chalcone derivative that exhibits antioxidant, anti-inflammatory, and phytoestrogenic activities. However, the effect of ISL treatment on lipid accumulation in hepatocytes and alcoholic hepatitis remains unclear. Therefore, we evaluated the effect and underlying mechanism of ISL on ethanol-induced hepatic steatosis by treating AML-12 cells with 200 mM ethanol and/or ISL (0~50 μM) for 72 hr. Lipid accumulation was assayed by oil red O staining, and the expression of sirtuin1 (SIRT1), sterol regulatory element-binding protein-1c (SREBP-1c), AMP-activated protein kinase (AMPK), and peroxisome proliferator-activated receptor alpha (PPARα) was studied by western blotting. Our results indicated that ISL treatment upregulated SIRT1 expression and downregulated SREBP-1c expression in ethanol-treated cells. Similarly, oil red O staining revealed a decrease in ethanol-induced fat accumulation upon co-treatment of ethanol-treated cells with 10, 20, and 50 μM of ISL. These findings suggest that ISL can reduce ethanol induced-hepatic lipogenesis by activating the SIRT1-AMPK pathway and thus improve lipid metabolism in alcoholic fatty livers.

Keywords: AML-12 cells; Ethanol; Hepatic steatosis; Isoliquiritigenin; NAFLD.