Editing of the human TRIM5 gene to introduce mutations with the potential to inhibit HIV-1

PLoS One. 2018 Jan 26;13(1):e0191709. doi: 10.1371/journal.pone.0191709. eCollection 2018.

Abstract

The type I interferon (IFN-I)-inducible human restriction factor TRIM5α inhibits the infection of human cells by specific nonhuman retroviruses, such as N-MLV and EIAV, but does not generally target HIV-1. However, the introduction of two aminoacid substitutions, R332G and R355G, in the human TRIM5α (huTRIM5α) domain responsible for retroviral capsid recognition leads to efficient HIV-1 restriction upon stable over-expression. CRISPR-Cas-based approaches to precisely edit DNA could be employed to modify TRIM5 in human cells. Toward this aim, we used a DNA transfection-based CRISPR-Cas9 genome editing protocol to successfully mutate TRIM5 to its potentially HIV-1-restrictive version by homology-directed repair (HDR) in HEK293T cells. Nine clones bearing at least one HDR-edited TRIM5 allele containing both mutations were isolated (5.6% overall efficiency), whereas another one contained only the R332G mutation. Of concern, several of these HDR-edited clones contained on-target undesired mutations, and none had all the alleles corrected. Our study demonstrates the feasibility of editing the TRIM5 gene in human cells and identifies the main challenges to be addressed in order to use this approach to confer protection from HIV-1.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antiviral Restriction Factors
  • CRISPR-Cas Systems
  • Carrier Proteins / genetics*
  • HEK293 Cells
  • HIV-1 / genetics*
  • Humans
  • Mutation*
  • Tripartite Motif Proteins
  • Ubiquitin-Protein Ligases

Substances

  • Antiviral Restriction Factors
  • Carrier Proteins
  • Tripartite Motif Proteins
  • TRIM5 protein, human
  • Ubiquitin-Protein Ligases

Grants and funding

This research received support from the Canadian Institutes of Health Research (CIHR; MOP-102712) and from the National Sciences and Engineering Council of Canada (DDG-2015-00016). CD is the recipient of a CIHR Canada Graduate Scholarships-Master’s Program award and a Master’s training scholarship from the Fonds de Recherche du Québec - Santé (FRQS). NMe received postdoctoral fellowships from CIHR and from FRQS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.