Context: The von Hippel Lindau (VHL) protein is a key executor of the cellular hypoxic response that is compromised in preeclampsia, a serious disorder complicating 5% to 7% of pregnancies. To date, the mechanisms controlling VHL gene expression in the human placenta remain elusive.
Objective: We examined VHL epigenetic regulation in normal pregnancy and in preeclampsia, a pathology characterized by placental hypoxia.
Design, setting, and participants: Placentae were obtained from early-onset preeclampsia (n = 56; <34 weeks of gestation) and late-onset preeclampsia (n = 19; ≥34 weeks of gestation). Placentae from healthy normotensive age-matched preterm control (n = 43) and term control (n = 23) pregnancies were included as controls.
Main outcome measure(s): We measured the activity of Jumonji domain containing protein 6 (JMJD6), a ferrous iron (Fe2+)- and oxygen-dependent histone demethylase, and examined its function in the epigenetic control of VHL.
Results: JMJD6 regulates VHL gene expression in the human placenta. VHL downregulation in preeclampsia is dependent on decreased JMJD6 demethylase activity due to hypoxia and reduced Fe2+ bioavailability. Chromatin immunoprecipitation assays revealed decreased association of JMJD6 and its histone targets with the VHL promoter. Findings in preeclampsia were corroborated in a murine model of pharmacological hypoxia using FG-4592. Placentae from FG-4592-treated mice exhibited reduced VHL levels, accompanied by placental morphological alterations and reduced pup weights. Notably, Fe2+ supplementation rescued JMJD6 histone demethylase activity in histone from E-PE and FG-4592-treated mice.
Conclusions: Our study uncovers epigenetic regulation of VHL and its functional consequences for altered oxygen and iron homeostasis in preeclampsia.