Therapeutic strategies targeting both cancer cells and associated cells in the tumor microenvironment offer significant promise in cancer therapy. We previously reported that generation 5 (G5) dendrimers conjugated with cyclic-RGD peptides target cells expressing integrin alpha V beta 3. In this study, we report a novel dendrimer conjugate modified to deliver the mammalian target of rapamycin (mTOR) inhibitor, rapamycin. In vitro analyses demonstrated that this drug conjugate, G5-FI-RGD-rapamycin, binds to prostate cancer (PCa) cells and fibroblasts to inhibit mTOR signaling and VEGF expression. In addition, G5-FI-RGD-rapamycin inhibits mTOR signaling in cancer cells more efficiently under proinflammatory conditions compared to free rapamycin. In vivo studies established that G5-FI-RGD-rapamycin significantly inhibits fibroblast-mediated PCa progression and metastasis. Thus, our results suggest the potential of new rapamycin-conjugated multifunctional nanoparticles for PCa therapy.
Keywords: VEGF; dendrimer; fibroblast; integrin; mTOR; metastasis; prostate cancer; rapamycin.
© 2018 Wiley Periodicals, Inc.