Longer life expectancies have led to an increased number of neurodegenerative disease cases globally. Accurate diagnosis of this devastating disorder is of crucial importance but is still feasible only by a brain biopsy after death. An enormous amount of attention and research has been in place over the years toward the better understanding of the mechanisms, as well as the early diagnosis, of neurodegeneration. However, numerous studies have been contradictory from time to time, while new diagnostic methods are constantly developed in a tireless effort to tackle the disease. Nonetheless, there is not yet a conclusive report covering a broader range of techniques for the diagnosis of different types of dementia. In this paper, we critically review current knowledge on the different hypotheses about the pathogenesis of distinct types of dementia, as well as risk factors and current diagnostic approaches in a clinical setting, including neuroimaging, cerebrospinal (CSF), and blood tests. Encouraging research results for the diagnosis and investigation of neurodegenerative disorders are also reported. Particular attention is given to the field of spectroscopy as an emerging tool to detect dementias, follow-up patients, and potentially monitor the patients' response to a therapeutic approach. Spectroscopic techniques, such as infrared and Raman spectroscopy, have facilitated numerous disease-related studies, including neurodegenerative disorders, and are currently undergoing trials for clinical implementation. This review constitutes a comprehensive report with an in-depth focus on promising imaging, molecular biomarker and spectroscopic tests in the field of dementive diseases.
Keywords: Neurodegenerative disease; biomarkers; dementia; diagnostic methods; neuroimaging; spectroscopy.