Purpose: To perform a rapid review of the recent literature on radiomics and breast cancer (BC).
Methods: A rapid review, a streamlined approach to systematically identify and summarize emerging studies was done (updated 27 September 2017). Clinical studies eligible for inclusion were those that evaluated BC using a radiomics approach and provided data on BC diagnosis (detection or characterization) or BC prognosis (response to therapy, morbidity, mortality), or provided data on technical challenges (software application: open source, repeatability of results). Descriptive statistics, results, and radiomics quality score (RQS) are presented.
Results: N = 17 retrospective studies, all published after 2015, provided BC-related radiomics data on 3928 patients evaluated with a radiomics approach. Most studies were done for diagnosis and/or characterization (65%, 11/17) or to aid in prognosis (41%, 7/17). The mean number of radiomics features considered was 100. Mean RQS score was 11.88 ± 5.8 (maximum value 36). The RQS criteria related to validation, gold standard, potential clinical utility, cost analysis, and open science data had the lowest scores. The majority of studies n = 16/17 (94%) provided correlation with histological outcomes and staging variables or biomarkers. Only 4/17 (23%) studies provided evidence of correlation with genomic data. Magnetic resonance imaging (MRI) was used in most studies n = 14/17 (82%); however, ultrasound (US), mammography, or positron emission tomography with 2-deoxy-2-[fluorine-18]fluoro-D-glucose integrated with computed tomography (18F FDG PET/CT) was also used. Much heterogeneity was found for software usage.
Conclusions: The study of radiomics in BC patients is a new and emerging translational research topic. Radiomics in BC is frequently done to potentially improve diagnosis and characterization, mostly using MRI. Substantial quality limitations were found; high-quality prospective and reproducible studies are needed to further potential application.
Keywords: Breast cancer; Characterization; Diagnosis; Magnetic resonance imaging; Prognosis; Radiomics.