Modern neuroscientific techniques that specifically manipulate and measure neuronal activity in behaving animals now allow bridging of the gap from the cellular to the behavioral level. However, in doing so, they also pose new challenges. Research using incompletely defined manipulations in a high-dimensional space without clear hypotheses is likely to suffer from multiple well-known conceptual and statistical problems. In this context it is essential to develop hypotheses with testable implications across levels. Here we propose that a focus on circuit motifs can help achieve this goal. Viewing neural structures as an assembly of circuit motif building blocks is not new. However, recent tool advances have made it possible to extensively map, specifically manipulate, and quantitatively investigate circuit motifs and thereby reexamine their relevance to brain function.
Keywords: behavior; circuit motif; high-dimensional research; inhibition; multilevel neuroscience; optogenetics.
Copyright © 2018 Elsevier Ltd. All rights reserved.