Automated Determination of Oxygen-Dependent Enzyme Kinetics in a Tube-in-Tube Flow Reactor

ChemCatChem. 2017 Sep 8;9(17):3285-3288. doi: 10.1002/cctc.201700811. Epub 2017 Aug 10.

Abstract

Enzyme-mediated oxidation is of particular interest to synthetic organic chemists. However, the implementation of such systems demands knowledge of enzyme kinetics. Conventionally collecting kinetic data for biocatalytic oxidations is fraught with difficulties such as low oxygen solubility in water and limited oxygen supply. Here, we present a novel method for the collection of such kinetic data using a pressurized tube-in-tube reactor, operated in the low-dispersed flow regime to generate time-series data, with minimal material consumption. Experimental development and validation of the instrument revealed not only the high degree of accuracy of the kinetic data obtained, but also the necessity of making measurements in this way to enable the accurate evaluation of high KMO enzyme systems. For the first time, this paves the way to integrate kinetic data into the protein engineering cycle.

Keywords: automated flow reactor; enzyme catalysis; kinetics; oxidation; tube-in-tube.