High-Capacity and Long-Cycle Life Aqueous Rechargeable Lithium-Ion Battery with the FePO4 Anode

ACS Appl Mater Interfaces. 2018 Feb 28;10(8):7061-7068. doi: 10.1021/acsami.7b18058. Epub 2018 Feb 14.

Abstract

Aqueous lithium-ion batteries are emerging as strong candidates for a great variety of energy storage applications because of their low cost, high-rate capability, and high safety. Exciting progress has been made in the search for anode materials with high capacity, low toxicity, and high conductivity; yet, most of the anode materials, because of their low equilibrium voltages, facilitate hydrogen evolution. Here, we show the application of olivine FePO4 and amorphous FePO4·2H2O as anode materials for aqueous lithium-ion batteries. Their capacities reached 163 and 82 mA h/g at a current rate of 0.2 C, respectively. The full cell with an amorphous FePO4·2H2O anode maintained 92% capacity after 500 cycles at a current rate of 0.2 C. The acidic aqueous electrolyte in the full cells prevented cathodic oxygen evolution, while the higher equilibrium voltage of FePO4 avoided hydrogen evolution as well, making them highly stable. A combination of in situ X-ray diffraction analyses and computational studies revealed that olivine FePO4 still has the biphase reaction in the aqueous electrolyte and that the intercalation pathways in FePO4·2H2O form a 2-D mesh. The low cost, high safety, and outstanding electrochemical performance make the full cells with olivine or amorphous hydrated FePO4 anodes commercially viable configurations for aqueous lithium-ion batteries.

Keywords: FePO4 and FePO4·2H2O anode; aqueous lithium-ion battery; electrochemical window; in situ XRD in aqueous battery; stable low-current cycling.