Customizing longitudinal electric field profiles using spatial dispersion in dielectric wire arrays

Opt Express. 2018 Feb 5;26(3):2478-2494. doi: 10.1364/OE.26.002478.

Abstract

We show how spatial dispersion can be used as a mechanism to customize the longitudinal profiles of electric fields inside modulated wire media, using a fast and remarkably accurate 1D inhomogeneous model. This customization gives fine control of the sub-wavelength behaviour of the field, as has been achieved recently for transverse fields in simpler slotted-slab media. Our scheme avoids any necessity to run a long series of computationally intensive 3D simulations of specific structures, in order to iteratively converge (or brute-force search) to an empirical 'best-performance' design according to an abstract figure-of-merit. Instead, if supplied with an 'ideal waveform' profile, we could now calculate how to construct it directly. Notably, and unlike most work on photonic crystal structures, our focus is specifically on the field profiles because of their potential utility, rather than other issues such as band-gap control, and/or transmission and reflection coefficients.