Hepatocellular carcinoma (HCC), one of the most common aggressive tumors worldwide has a relatively high mortality rate among malignant tumors. MicroRNAs (miRNAs), acting as tumor suppressors, are involved in the regulation of invasion, metastasis, and angiogenesis of tumor cells. However, a potential role for miR-203a in HCC has not been described yet. In this study, we show that miR-203a markedly suppresses HCC cell migration, invasion, and angiogenesis. In addition, the transcription factor HOXD3 appears to be a direct target of miR-203a. HOXD3 knockdown substantially decreased HCC cell migration, invasion, and angiogenesis, effects similar to those seen for miR-203a expression. Rescuing the function of HOXD3 attenuated the effect of miR-203a overexpression in HCC cells. Furthermore, HOXD3 can directly target the promoter region of VEGFR and increase VEGFR expression. Taken together, our findings indicate that miR-203a inhibits HCC cell invasion, metastasis, and angiogenesis by negatively targeting HOXD3 and suppressing cell signaling through the VEGFR pathway, suggesting that miR-203a might represent a potential therapeutic target for HCC intervention.