Expression of microRNA-155 in inflammatory cells modulates liver injury

Hepatology. 2018 Aug;68(2):691-706. doi: 10.1002/hep.29833. Epub 2018 May 2.

Abstract

MicroRNA 155 (miR-155) is involved in immune and inflammatory diseases and is associated with liver fibrosis and steatohepatitis. However, the mechanisms involved in miR-155 regulation of liver injury are largely unknown. The role of miR-155 in acute liver injury was assessed in wild-type (WT), miR-155-/- , and miR-155-/- mice transplanted with WT bone marrow. Additionally, miR-155 expression was evaluated in liver tissue and peripheral blood mononuclear cells of patients with autoimmune hepatitis. Concanavalin A, but not acetaminophen, treatment increased the expression of miR-155 in liver tissue of WT mice. Concanavalin A induced increases in cell death, liver aminotransferases, and expression of proinflammatory cytokines (chemokine [C-X-C motif] ligands 1, 5, 9, 10, and 11; chemokine [C-C motif] ligands 2 and 20; and intercellular cell adhesion molecule 1) in miR-155-/- compared to WT mice. Importantly, these animals showed a significant decrease in cluster of differentiation 4-positive/chemokine (C-X-C motif) receptor 3-positive and forkhead box p3-positive cell recruitment but no changes in other inflammatory cell populations. Mechanistically, miR-155-deficient regulatory T cells showed increased SH2 domain-containing inositol 5-phosphatase 1 expression, a known target of miR-155. Inhibition of SH2 domain-containing inositol 5-phosphatase 1 in miR-155-/- mice restored forkhead box p3 recruitment and reduced liver cytokine expression. Transplantation of bone marrow from WT animals into miR-155-/- mice partially reversed the effect of concanavalin A on miR-155-/- mice as assessed by proinflammatory cytokines and cell death protein expression. Patients with autoimmune hepatitis showed a marked increase in miR-155 expression in the liver but reduced expression of miR-155 in peripheral blood mononuclear cells.

Conclusion: miR-155 expression is altered in both liver tissue and circulating inflammatory cells during liver injury, thus regulating inflammatory cell recruitment and liver damage; these results suggest that maintaining miR-155 expression in inflammatory cells might be a potential strategy to modulate liver injury. (Hepatology 2018).

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Animals
  • Concanavalin A / pharmacology
  • Cytokines / metabolism
  • Female
  • Hepatitis, Autoimmune / metabolism*
  • Hepatocytes / metabolism
  • Humans
  • Liver / metabolism*
  • Liver / pathology
  • Liver Diseases / metabolism*
  • Liver Diseases / pathology
  • Male
  • Mice
  • Mice, Knockout
  • MicroRNAs / metabolism*
  • Middle Aged
  • Signal Transduction

Substances

  • Cytokines
  • MIRN155 microRNA, human
  • MicroRNAs
  • Mirn155 microRNA, mouse
  • Concanavalin A