Ultrasound biometry is an important clinical tool for the identification, monitoring, and management of fetal growth restriction and development of macrosomia. This is even truer in populations in which perinatal morbidity and mortality rates are high, which is a reason that much effort is put onto making the technique available everywhere, including low-income societies. Until recently, however, commonly used reference ranges were based on single populations largely from industrialized countries. Thus, the World Health Organization prioritized the establishment of fetal growth charts for international use. New fetal growth charts for common fetal measurements and estimated fetal weight were based on a longitudinal study of 1387 low-risk pregnant women from 10 countries (Argentina, Brazil, Democratic Republic of Congo, Denmark, Egypt, France, Germany, India, Norway, and Thailand) that provided 8203 sets of ultrasound measurements. The participants were characterized by median age 28 years, 58% nulliparous, normal body mass index, with no socioeconomic or nutritional constraints (median caloric intake, 1840 calories/day), and had the ability to attend the ultrasound sessions, thus essentially representing urban populations. Median gestational age at birth was 39 weeks, and birthweight was 3300 g, both with significant differences among countries. Quantile regression was used to establish the fetal growth charts, which also made it possible to demonstrate a number of features of fetal growth that previously were not well appreciated or unknown: (1) There was an asymmetric distribution of estimated fetal weight in the population. During early second trimester, the distribution was wider among fetuses <50th percentile compared with those above. The pattern was reversed in the third trimester, with a notably wider variation >50th percentile. (2) Although fetal sex, maternal factors (height, weight, age, and parity), and country had significant influence on fetal weight (1-4.5% each), their effect was graded across the percentiles. For example, the positive effect of maternal height on fetal weight was strongest on the lowest percentiles and smallest on the highest percentiles for estimated fetal weight. (3) When adjustment was made for maternal covariates, there was still a significant effect of country as covariate that indicated that ethnic, cultural, and geographic variation play a role. (4) Variation between populations was not restricted to fetal size because there were also differences in growth trajectories. (5) The wide physiologic ranges, as illustrated by the 5th-95th percentile for estimated fetal weight being 2205-3538 g at 37 weeks gestation, signify that human fetal growth under optimized maternal conditions is not uniform. Rather, it has a remarkable variation that largely is unexplained by commonly known factors. We suggest this variation could be part of our common biologic strategy that makes human evolution extremely successful. The World Health Organization fetal growth charts are intended to be used internationally based on low-risk pregnancies from populations in Africa, Asia, Europe, and South America. We consider it prudent to test and monitor whether the growth charts' performance meets the local needs, because refinements are possible by a change in cut-offs or customization for fetal sex, maternal factors, and populations. In the same line, the study finding of variations emphasizes the need for carefully adjusted growth charts that reflect optimal local growth when public health issues are addressed.
Keywords: birthweight; estimated fetal weight; fetal development; fetal growth; fetus; growth standard; maternal characteristic; multicenter; population variation; reference range; ultrasound.
Copyright © 2017 Elsevier Inc. All rights reserved.