Multi-pollutant Modeling Through Examination of Susceptible Subpopulations Using Profile Regression

Curr Environ Health Rep. 2018 Mar;5(1):59-69. doi: 10.1007/s40572-018-0177-0.

Abstract

Purpose of review: The inter-correlated nature of exposure-based risk factors in environmental health studies makes it a challenge to determine their combined effect on health outcomes. As such, there has been much research of late regarding the development and utilization of methods in the field of multi-pollutant modeling. However, much of this work has focused on issues related to variable selection in a regression context, with the goal of identifying which exposures are the "bad actors" most responsible for affecting the health outcome of interest. However, the question addressed by these approaches does not necessarily represent the only or most important questions of interest in a multi-pollutant modeling context, where researchers may be interested in health effects from co-exposure patterns and in identifying subpopulations associated with patterns defined by different levels of constituent exposures.

Recent findings: One approach to analyzing multi-pollutant data is to use a method known as Bayesian profile regression, which aids in identifying susceptible subpopulations associated with exposure mixtures defined by different levels of each exposure. Identification of exposure-level patterns that correspond to a location may provide a starting point for policy-based exposure reduction. Also, in a spatial context, identification of locations with the most health-relevant exposure-mixture profiles might provide further policy relevant information. In this brief report, we review and describe an approach that can be used to identify exposures in subpopulations or locations known as Bayesian profile regression. An example is provided in which we examine associations between air pollutants, an indicator of healthy food retailer availability, and indicators of poverty in Los Angeles County. A general tread suggesting that vulnerable individuals are more highly exposed and have limited access to healthy food retailers is observed, though the associations are complex and non-linear.

Keywords: Bayesian profile regression; Health effects; Health policy; Multi-pollutant modeling; Susceptible subpopulations.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Bayes Theorem
  • Environmental Exposure / adverse effects*
  • Environmental Exposure / statistics & numerical data
  • Environmental Pollutants / adverse effects*
  • Humans
  • Models, Statistical
  • Regression Analysis

Substances

  • Environmental Pollutants