Surface-Assisted Alkane Polymerization: Investigation on Structure-Reactivity Relationship

J Am Chem Soc. 2018 Apr 11;140(14):4820-4825. doi: 10.1021/jacs.7b09097. Epub 2018 Feb 20.

Abstract

Surface-assisted polymerization of alkanes is a remarkable reaction for which the surface reconstruction of Au(110) is crucial. The surface of (1×2)-Au(110) precovered with molecules can be completely transformed into (1×3)-Au(110) by introducing branched methylidene groups on both sides of the aliphatic chain (18, 19-dimethylidenehexatriacontane) or locally shifted into (1×3)-Au(110) under exposure to low-energy electrons (beam energy from 3.5 to 33.6 eV, for alkane dotriacontane). Scanning tunneling microscopy investigations demonstrate that alkane chains adsorbed on (1×3)-Au(110) are more reactive than on (1×2)-Au(110), presenting a solid experimental proof for structure-reactivity relationships. This difference can be ascribed to the existence of an extra row of gold atoms in the groove of (1×3)-Au(110), providing active sites of Au atoms with lower coordination number. The experimental results are further confirmed by density functional theory simulations.

Publication types

  • Research Support, Non-U.S. Gov't