In a study of 39 isolates of Edwardsiella piscicida made from Korean aquaculture sites, sul genes were detected in 16 isolates and dfr genes in 19. Ten isolates were shown to contain both sul and dfr genes. MIC and disc diffusion zones assays were performed to measure the phenotypic susceptibilities of the 39 isolates. Normalized resistance interpretation was applied to these data to categorize isolates as either fully susceptible or as manifesting reduced susceptibility. The standard CLSI protocols specify the use of a mixture of sulfamethoxazole/trimethoprim (20:1) in both MIC and disc diffusion tests. Using the CLSI MIC protocol, 100% of the isolates containing dfr genes, but only 75% of the isolates containing sul genes, were categorized as manifesting reduced susceptibility. Using the CLSI disc diffusion protocol, only 58% of the isolates containing dfr genes and 69% of those containing sul genes were categorized as manifesting reduced susceptibility. When the single agent trimethoprim was substituted for the combined mixture in both the MIC and disc diffusion protocols, 100% of the dfr-positive isolates were categorized as NWT. When the single-agent sulfamethoxazole was substituted, the analysis of the MIC characterized 100% and the disc zone data 94% of the sul-positive isolates as manifesting reduced susceptibility. It is argued that the use of trimethoprim and sulfamethoxazole as single agents in phenotypic susceptibility tests would provide more meaningful data than the currently recommended use of these two agents combined.
Keywords: CLSI; Edwardsiella piscicida; MIC; antibiotic susceptibility tests; dfr genes; disc diffusion; sul genes.