Overall shared DNA methylation patterns between senescence (Sen) and cancers have led to the model that tumor-promoting epigenetic patterns arise through senescence. We show that transformation-associated methylation changes arise stochastically and independently of programmatic changes during senescence. Promoter hypermethylation events in transformation involve primarily pro-survival and developmental genes, similarly modified in primary tumors. Senescence-associated hypermethylation mainly involves metabolic regulators and appears early in proliferating "near-senescent" cells, which can be immortalized but are refractory to transformation. Importantly, a subset of transformation-associated hypermethylated developmental genes exhibits highest methylation gains at all age-associated cancer risk states across tissue types. These epigenetic changes favoring cell self-renewal and survival, arising during tissue aging, are fundamentally important for stratifying cancer risk and concepts for cancer prevention.
Keywords: DNA methylation; aging; cancer; cancer risk; epigenetic; malignant transformation; oncogene-induced senescence; promoter CpG-island; senescence.
Copyright © 2018 Elsevier Inc. All rights reserved.