The basal forebrain provides cholinergic inputs to primary visual cortex (V1) that play a key modulatory role on visual function. While basal forebrain afferents terminate in the infragranular layers of V1, acetylcholine is delivered to more superficial layers through volume transmission. Nevertheless, direct synaptic contact in deep layers 5 and 6 may provide a more immediate effect on V1 modulation. Using helper viruses with cell type specific promoters to target retrograde infection of pseudotyped and genetically modified rabies virus evidence was found for direct synaptic input onto V1 inhibitory neurons. These inputs were similar in number to geniculocortical inputs and, therefore, considered robust. In contrast, while clear evidence for dorsal lateral geniculate nucleus input to V1 excitatory neurons was found, there was no evidence of direct synaptic input from the basal forebrain. These results suggest a direct and more immediate influence of the basal forebrain on local V1 inhibition.
Keywords: GABAergic; RRID:AB_477652; RRID:AB_523902; V1; acetylcholine; basal forebrain; cholinergic; cortical inhibition; cortical layers; diagonal band; inhibitory neurons; subcortical; visual cortex.
© 2018 Wiley Periodicals, Inc.