A series of Cobalt-Carbon, Cobalt-Molybdenum-Carbon catalysts were prepared by impregnation. The molar ratios of Co:Mo were 9:1, 8:2 and 7:3 and the total metal weights of them in the supported catalysts were 5 wt%. Moreover, the effects of reaction temperature and the Co:Mo molar ratios on the produce hydrogen and carbon nanotubes were investigated systematically. Of all the catalysts, Co-Mo (5 wt%, Co:Mo = 9:1)/C was the most effective one on the basis of hydrogen yield (84%), ethanol conversion (95%) and the quality of carbon nanotubes at 600 °C. A small amount of Mo added into the Co/C catalysts resulted in increasing in the yield of hydrogen and improving on quality of carbon nanotubes from ethanol decomposition over the Co-Mo catalysts.