Leprosy is a chronic infection of skin and nerve caused by Mycobacterium leprae. The treatment is based on standard multi drug therapy consisting of dapsone, rifampicin and clofazamine. The use of rifampicin alone or with dapsone led to the emergence of rifampicin-resistant Mycobacterium leprae strains. The emergence of drug-resistant leprosy put a hurdle in the leprosy eradication programme. The present study aimed to predict the molecular model of ribonucleotide reductase (RNR), the enzyme responsible for biosynthesis of nucleotides, to screen new drugs for treatment of drug-resistant leprosy. The study was conducted by retrieving RNR of M. leprae from GenBank. A molecular 3D model of M. leprae was predicted using homology modelling and validated. A total of 325 characters were included in the analysis. The predicted 3D model of RNR showed that the ϕ and φ angles of 251 (96.9%) residues were positioned in the most favoured regions. It was also conferred that 18 α-helices, 6 β turns, 2 γ turns and 48 helix-helix interactions contributed to the predicted 3D structure. Virtual screening of Food and Drug Administration approved drug molecules recovered 1829 drugs of which three molecules, viz., lincomycin, novobiocin and telithromycin, were taken for the docking study. It was observed that the selected drug molecules had a strong affinity towards the modelled protein RNR. This was evident from the binding energy of the drug molecules towards the modelled protein RNR (-6.10, -6.25 and -7.10). Three FDA-approved drugs, viz., lincomycin, novobiocin and telithromycin, could be taken for further clinical studies to find their efficacy against drug resistant leprosy.
Keywords: Docking; Homology modelling; Leprosy; Mycobacterium leprae; Ribonucleotide reductase.
Copyright © 2018 Elsevier B.V. All rights reserved.