Structural transformations of supramolecular systems triggered by external stimuli maintain great potential for application in the fabrication of molecular storage devices. Using combined ultrahigh vacuum scanning tunneling microscopy, X-ray photoemission spectroscopy, and density functional theory calculations, we observed the surface adatom mediated structural transformation from 4,4''-dibromo- m-terphenyl (DMTP)-based halogen-bonded networks to DMTP-Cu(Ag) coordination networks on Cu(111) and Ag(111) at low temperatures. The halogen-bonded networks, which were formed on Cu(111) at 97 K and on Ag(111) at 93 K, consist of intact DMTP molecules stabilized by triple Br···Br bonds. The DMTP-Cu(Ag) coordination networks form on Cu(111) at 113 K and on Ag(111) at 103 K. They contain alternatingly arranged intact DMTP molecules and Cu(Ag) adatoms stabilized by weak C-Br···Cu(Ag) coordination bonds. Annealing the DMTP-Ag structure to 333 K leads to the initiation of C-Br bond scission. This observation suggests that the DMTP-Ag coordination network represents the intermediate phase ready for dehalogenation, which is the first step of the surface Ullmann reaction.
Keywords: Ullmann coupling; X-ray photoemission spectroscopy; bromoarene; scanning tunneling microscopy; structural transformation; supramolecular structure; surface adatom.