Action video game players (aVGPs) display increased performance in attention-based tasks and enhanced procedural motor learning. In parallel, the anterior cingulate cortex (ACC) is centrally implicated in specific types of reward-based learning and attentional control, the execution or inhibition of motor commands, and error detection. These processes are hypothesized to support aVGP in-game performance and enhanced learning though in-game feedback. We, therefore, tested the hypothesis that habitual aVGPs would display increased cortical thickness compared with nonvideo game players (nonVGPs). Results showed that the aVGP group (n=17) displayed significantly higher levels of cortical thickness specifically in the dorsal ACC compared with the nonVGP group (n=16). Results are discussed in the context of previous findings examining video game experience, attention/performance, and responses to affective components such as pain and fear.