Complete Genome Sequencing of Acinetobacter baumannii Strain K50 Discloses the Large Conjugative Plasmid pK50a Encoding Carbapenemase OXA-23 and Extended-Spectrum β-Lactamase GES-11

Antimicrob Agents Chemother. 2018 Apr 26;62(5):e00212-18. doi: 10.1128/AAC.00212-18. Print 2018 May.

Abstract

Multidrug-resistant (MDR) Acinetobacter baumannii strains appeared as serious emerging nosocomial pathogens in clinical environments and especially in intensive care units (ICUs). A. baumannii strain K50, recovered from a hospitalized patient in Kuwait, exhibited resistance to carbapenems and additionally to ciprofloxacin, chloramphenicol, sulfonamides, amikacin, and gentamicin. Genome sequencing revealed that the strain possesses two plasmids, pK50a (79.6 kb) and pK50b (9.5 kb), and a 3.75-Mb chromosome. A. baumannii K50 exhibits an average nucleotide identity (ANI) of 99.98% to the previously reported Iraqi clinical isolate AA-014, even though the latter strain lacked plasmid pK50a. Strain K50 belongs to sequence type 158 (ST158) (Pasteur scheme) and ST499 (Oxford scheme). Plasmid pK50a is a member of the Aci6 (replication group 6 [RG6]) group of Acinetobacter plasmids and carries a conjugative transfer module and two antibiotic resistance gene regions. The transposon Tn2008 carries the carbapenemase gene blaOXA-23, whereas a class 1 integron harbors the resistance genes blaGES-11, aacA4, dfrA7, qacEΔ1, and sul1, conferring resistance to all β-lactams and reduced susceptibility to carbapenems and resistance to aminoglycosides, trimethoprim, quaternary ammonium compounds, and sulfamethoxazole, respectively. The class 1 integron is flanked by MITEs (miniature inverted-repeat transposable elements) delimiting the element at its insertion site.

Keywords: Acinetobacter baumannii; antibiotic resistance; carbapenemase; conjugative transfer; β-lactamase.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acinetobacter baumannii / drug effects
  • Acinetobacter baumannii / enzymology*
  • Acinetobacter baumannii / genetics*
  • Anti-Bacterial Agents / pharmacology*
  • Bacterial Proteins / genetics
  • Microbial Sensitivity Tests
  • Plasmids / genetics
  • Whole Genome Sequencing / methods*
  • beta-Lactamases / genetics

Substances

  • Anti-Bacterial Agents
  • Bacterial Proteins
  • beta-Lactamases
  • carbapenemase