Background: We attempted to identify the molecular profiles of gastric intramucosal neoplasia (IMN; low-grade dysplasia, LGD; high-grade dysplasia, HGD; intramucosal cancer, IMC) by assessing somatic copy number alterations (SCNAs) stratified by microsatellite status (microsatellite stable, MSS; microsatellite instable, MSI). Thus, microsatellite status was determined in 84 tumors with MSS status and 16 tumors with MSI status.
Methods: One hundred differentiated type IMNs were examined using SCNAs. In addition, genetic mutations (KRAS, BRAF, PIK3CA, and TP53) and DNA methylation status (low, intermediate and high) were also analyzed. Finally, we attempted to identify molecular profiles using a hierarchical clustering analysis.
Results: Three patterns could be categorized according to SCNAs in IMNs with the MSS phenotype: subgroups 1 and 2 showing a high frequency of SCNAs, and subgroup 3 displaying a low frequency of SCNAs (subgroup 1 > 2 > 3 for SCNA). Subgroup 1 could be distinguished from subgroup 2 by the numbers of total SCNAs (gains and losses) and SCN gains (subgroup 1 > 2). The SCNA pattern of LGD was different from that of HGD and IMC. Moreover, IMNs with the MSI phenotype could be categorized into two subtypes: high frequency of SCNAs and low frequency of SCNAs. Genetic mutations and DNA methylation status did not differ among subgroups in IMNs.
Conclusion: Molecular profiles stratified by SCNAs based on microsatellite status may be useful for elucidation of the mechanisms of early gastric carcinogenesis.
Keywords: Comprehensive genomic analysis; Copy number alteration; Gastric intramucosal neoplasia; Microsatellite instability; Mutation.