Engineered protein degradation of farnesyl pyrophosphate synthase is an effective regulatory mechanism to increase monoterpene production in Saccharomyces cerevisiae

Metab Eng. 2018 May:47:83-93. doi: 10.1016/j.ymben.2018.02.005. Epub 2018 Feb 19.

Abstract

Monoterpene production in Saccharomyces cerevisae requires the introduction of heterologous monoterpene synthases (MTSs). The endogenous farnesyl pyrosphosphate synthase (FPPS; Erg20p) competes with MTSs for the precursor geranyl pyrophosphate (GPP), which limits the production of monoterpenes. ERG20 is an essential gene that cannot be deleted and transcriptional down-regulation of ERG20 has failed to improve monoterpene production. Here, we investigated an N-degron-dependent protein degradation strategy to down-regulate Erg20p activity. Degron tagging decreased GFP protein half-life drastically to 1 h (degron K3K15) or 15 min (degrons KN113 and KN119). Degron tagging of ERG20 was therefore paired with a sterol responsive promoter to ensure sufficient metabolic flux to essential downstream sterols despite the severe destabilisation effect of degron tagging. A dual monoterpene/sesquiterpene (linalool/nerolidol) synthase, AcNES1, was used as a reporter of intracellular GPP and FPP production. Transcription of the synthetic pathway was controlled by either constitutive or diauxie-inducible promoters. A combination of degron K3K15 and the ERG1 promoter increased linalool titre by 27-fold to 11 mg L-1 in the strain with constitutive promoter constructs, and by 17-fold to 18 mg L-1 in the strain with diauxie-inducible promoter constructs. The sesquiterpene nerolidol remained the major product in both strains. The same strategies were applied to construct a limonene-producing strain, which produced 76 mg L-1 in batch cultivation. The FPPS regulation method developed here successfully redirected metabolic flux toward monoterpene production. Examination of growth defects in various strains suggested that the intracellular FPP concentration had a significant effect on growth rate. Further strategies are required to balance intracellular production of FPP and GPP so as to maximise monoterpene production without impacting on cellular growth.

Keywords: Flux competition/redirection; Metabolic engineering; Monoterpene; Prenyl pyrosphosphate synthase; Protein destabilization; Synthetic biology.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Geranyltranstransferase* / genetics
  • Geranyltranstransferase* / metabolism
  • Metabolic Engineering*
  • Monoterpenes / metabolism*
  • Proteolysis*
  • Saccharomyces cerevisiae Proteins* / genetics
  • Saccharomyces cerevisiae Proteins* / metabolism
  • Saccharomyces cerevisiae* / genetics
  • Saccharomyces cerevisiae* / metabolism

Substances

  • Monoterpenes
  • Saccharomyces cerevisiae Proteins
  • Geranyltranstransferase