This work presents the design, development and optimization of a screening method based on single-base extension sequencing to simultaneously analyze a panel of 52 mitochondrial SNPs. This enables to recognize the main mitochondrial haplogroups and to discriminate even between lineages from the same phylogenetic branch that diverged in different continents. The unavailability of individuals harboring infrequent variants was a limitation to optimize the panel. To overcome this, we have modified DNA by site-directed mutagenesis to create the unavailable allelic variants. This allowed us to verify the reliability of this panel and its usefulness to be applied in biomedicine, forensic and population genetic studies.
Keywords: Forensic genetics; Genetic epidemiology; Human population genetics; SNaPshot; Single-base extension; Site-directed mutagenesis.
Copyright © 2018 Elsevier B.V. and Mitochondria Research Society. All rights reserved.