Cysteine S-nitrosation is a reversible post-translational modification mediated by nitric oxide (•NO)-derived agents. S-Nitrosation participates in cellular signaling and is associated with several diseases such as cancer, cardiovascular diseases, and neuronal disorders. Despite the physiological importance of this nonclassical •NO-signaling pathway, little is understood about how much S-nitrosation affects protein function. Moreover, identifying physiologically relevant targets of S-nitrosation is difficult because of the dynamics of transnitrosation and a limited understanding of the physiological mechanisms leading to selective protein S-nitrosation. To identify proteins whose activities are modulated by S-nitrosation, we performed a metabolomics study comparing WT and endothelial nitric-oxide synthase knockout mice. We integrated our results with those of a previous proteomics study that identified physiologically relevant S-nitrosated cysteines, and we found that the activity of at least 21 metabolic enzymes might be regulated by S-nitrosation. We cloned, expressed, and purified four of these enzymes and observed that S-nitrosation inhibits the metabolic enzymes 6-phosphogluconate dehydrogenase, Δ1-pyrroline-5-carboxylate dehydrogenase, catechol-O-methyltransferase, and d-3-phosphoglycerate dehydrogenase. Furthermore, using site-directed mutagenesis, we identified the predominant cysteine residue influencing the observed activity changes in each enzyme. In summary, using an integrated metabolomics approach, we have identified several physiologically relevant S-nitrosation targets, including metabolic enzymes, which are inhibited by this modification, and we have found the cysteines modified by S-nitrosation in each enzyme.
Keywords: S-nitrosylation; enzyme kinetics; metabolism; metabolomics; nitric oxide; proteomics.
© 2018 by The American Society for Biochemistry and Molecular Biology, Inc.