Viable aromatic BenHn stars enclosing a planar hypercoordinate boron or late transition metal

Phys Chem Chem Phys. 2018 Mar 7;20(10):7217-7222. doi: 10.1039/c7cp06955c.

Abstract

Monocyclic Bn rings can act as n-electron σ-donors to stabilize a non-classical planar hypercoordinate atom at ring center, forming wheel-like structures. Herein, we report that BenHn rings can also serve as n-electron σ-donors to construct star-like structures including B©Be6H6+ and TM©Be7H7q (TM is a group 10-12 metal with q = -1, 0, and 1, respectively) by complying with octet or 18-electron rules. Electronic structure analyses show that these species are stabilized by the σ-donation and π-backdonation between the central atom and the peripheral BenHn ring, the favorable Coulomb attraction due to the negative-positive-negative charge population pattern on the central atom, the middle Ben layer, and the outer Hn layer, as well as the σ-π double aromaticity. Importantly, three of the ten species, including B©Be6H6+, Cu©Be7H7, and Au