CK2 is a pleiotropic S/T protein kinase (formerly known as casein kinase 2) which is attracting increasing interest as therapeutic target, and the identification of its substrates is a crucial step in determining its involvement in different pathological conditions. We recently found that S131 of Akt2 (homologous to the well established CK2 target S129 of Akt1) is not phosphorylated by CK2 either in vitro or in vivo, although the consensus sequence recognized by CK2 (S/T-x-x-E/D/pS/pT) is conserved in it. Here, by exploiting synthetic peptides, in cell transfection experiments, and computational analysis, we show that a single sequence element, a T at position n+1, hampers phosphorylation, causing an α-helix structure organization which prevents the recognition of its own consensus by CK2. Our results highlight the role of negative determinants as crucial modulators of CK2 targeting and corroborate the concept that Akt1 and Akt2 display isoform specific features. Experiments with synthetic peptides suggest that Akt2 S131 could be phosphorylated by kinases of the Plk (Polo-like kinase) family, which are insensitive to the presence of the n+1 T. The low phylogenetic conservation of the Akt2 sequence around S131, as opposed to the extremely well-conserved Akt1 homologous sequence, would indicate a dominant positive role in the selective pressure only for the Akt1 phosphoacceptor site committed to undergo phosphorylation by CK2. By contrast, Akt2 S131 may mediate the response to specific physio/pathological conditions, being consequently shielded against basal CK2 targeting.