Physiological validation of photochemical reflectance index (PRI) as a photosynthetic parameter using Arabidopsis thaliana mutants

Biochem Biophys Res Commun. 2018 Mar 25;498(1):52-57. doi: 10.1016/j.bbrc.2018.02.192. Epub 2018 Feb 28.

Abstract

Non-photochemical quenching (NPQ) is the most important photoprotective system in higher plants. NPQ can be divided into several steps according to the timescale of relaxation of chlorophyll fluorescence after reaching a steady state (i.e., the fast phase, qE; middle phase, qZ or qT; and slow phase, qI). The dissipation of excess energy as heat during the xanthophyll cycle, a large component of NPQ, is detectable during the fast to middle phase (sec to min). Although thermal dissipation is primarily investigated using indirect methods such as chlorophyll a fluorescence measurements, such analyses require dark adaptation or the application of a saturating pulse during measurement, making it difficult to continuously monitor this process. Here, we designed an unconventional technique for real-time monitoring of changes in thylakoid lumen pH (as reflected by changes in xanthophyll pigment content) based on the photochemical reflectance index (PRI), which we estimated by measuring light-driven leaf reflectance at 531 nm. We analyzed two Arabidopsis thaliana mutants, npq1 (unable to convert violaxanthin to zeaxanthin due to inhibited violaxanthin de-epoxidase [VDE] activity) and npq4 (lacking PsbS protein), to uncover the regulator of the PRI. The PRI was variable in wild-type and npq4 plants, but not in npq1, indicating that the PRI is related to xanthophyll cycle-dependent thermal energy quenching (qZ) rather than the linear electron transport rate or NPQ. In situ lumen pH substitution using a pH-controlled buffer solution caused a shift in PRI. These results suggest that the PRI reflects only xanthophyll cycle conversion and is therefore a useful parameter for monitoring thylakoid lumen pH (reflecting VDE activity) in vivo.

Keywords: Energy-dependent exciton quenching (qE); Non-photochemical quenching (NPQ); Photochemical reflectance index (PRI); Xanthophyll cycle.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / genetics
  • Arabidopsis / physiology*
  • Arabidopsis / radiation effects*
  • Chlorophyll / metabolism
  • Chlorophyll A
  • Fluorescence
  • Hydrogen-Ion Concentration
  • Light*
  • Mutation / genetics*
  • Photosynthesis / radiation effects*
  • Plant Leaves / physiology
  • Plant Leaves / radiation effects

Substances

  • Chlorophyll
  • Chlorophyll A