Although shape memory polymers have been highlighted widely and developed rapidly, it is still a challenging task to realize complex temporary shapes automatically in practical applications. Herein, a novel shape memory hydrogel with the ability of self-deformation is presented. Through constructing an anisotropic poly(acrylic acid)-polyacrylamide (PAAc-PAAm) structure, the obtained hydrogel exhibits stable self-deformation behavior in response to pH stimulus, and the shapes that formed automatically can be fixed by the coordination between carboxylic groups and Fe3+ ; therefore, self-deformation and shape memory behaviors are integrated in one system. Moreover, the magnitude of auto-deformation and shape memory could be adjusted with the concentration of corresponding ions, leading to programmable shape memory and shape recovery processes.
Keywords: complementary functionalities; self-driven; shape memory; stimuli-responsive hydrogels.
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.