ΔF508-CFTR Modulator Screen Based on Cell Surface Targeting of a Chimeric Nucleotide Binding Domain 1 Reporter

SLAS Discov. 2018 Sep;23(8):823-831. doi: 10.1177/2472555218763310. Epub 2018 Mar 13.

Abstract

The most common cystic fibrosis-causing mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) is deletion of phenylalanine at residue 508 (∆F508). The ∆F508 mutation impairs folding of nucleotide binding domain 1 (NBD1) and interfacial interactions of NBD1 and the membrane spanning domains. Here, we report a domain-targeted screen to identify ∆F508-CFTR modulators that act on NBD1. A biochemical screen for ΔF508-NBD1 cell surface expression was done in Madin-Darby canine kidney cells expressing a chimeric reporter consisting of ΔF508-NBD1, the CD4 transmembrane domain, and an extracellular horseradish peroxidase (HRP) reporter. Using a luminescence readout of HRP activity, the screen was robust with a Z' factor of 0.7. The screening of ~20,000 synthetic small molecules allowed the identification of compounds from four chemical classes that increased ∆F508-NBD1 cell surface expression by up to 4-fold; for comparison, a 12-fold increased cell surface expression was found for a wild-type NBD1 chimera. While the compounds were inactive as correctors of full-length ΔF508-CFTR, several carboxamide-benzothiophenes had potentiator activity with low micromolar EC50. Interestingly, the potentiators did not activate G551D or wild-type CFTR. Our results provide a proof of concept for a cell-based NBD1 domain screen to identify ∆F508-CFTR modulators that target the NBD1 domain.

Keywords: CFTR; cystic fibrosis; high-throughput screen; potentiator.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line
  • Cell Membrane / metabolism
  • Cystic Fibrosis / genetics
  • Cystic Fibrosis Transmembrane Conductance Regulator / chemistry
  • Cystic Fibrosis Transmembrane Conductance Regulator / genetics*
  • Cystic Fibrosis Transmembrane Conductance Regulator / metabolism*
  • Drug Discovery / methods*
  • Gene Expression Regulation / drug effects*
  • Genes, Reporter*
  • High-Throughput Screening Assays
  • Humans
  • Molecular Structure
  • Protein Interaction Domains and Motifs / drug effects*
  • Structure-Activity Relationship

Substances

  • cystic fibrosis transmembrane conductance regulator delta F508
  • Cystic Fibrosis Transmembrane Conductance Regulator