WSB-1 regulates the metastatic potential of hormone receptor negative breast cancer

Br J Cancer. 2018 May;118(9):1229-1237. doi: 10.1038/s41416-018-0056-3. Epub 2018 Mar 15.

Abstract

Background: Metastatic spread is responsible for the majority of cancer-associated deaths. The tumour microenvironment, including hypoxia, is a major driver of metastasis. The aim of this study was to investigate the role of the E3 ligase WSB-1 in breast cancer biology in the context of the hypoxic tumour microenvironment, particularly regarding metastatic spread.

Methods: In this study, WSB-1 expression was evaluated in breast cancer cell lines and patient samples. In silico analyses were used to determine the impact of WSB-1 expression on distant metastasis-free survival (DMFS) in patients, and correlation between WSB1 expression and hypoxia gene expression signatures. The role of WSB-1 on metastasis promotion was evaluated in vitro and in vivo.

Results: High WSB1 expression was associated with decreased DMFS in ER-breast cancer and PR-breast cancer patients. Surprisingly, WSB1 expression was not positively correlated with known hypoxic gene expression signatures in patient samples. Our study is the first to show that WSB-1 knockdown led to decreased metastatic potential in breast cancer hormone receptor-negative models in vitro and in vivo. WSB-1 knockdown was associated with decreased metalloproteinase (MMP) activity, vascular endothelial growth factor (VEGF) secretion, and angiogenic potential.

Conclusions: Our data suggests that WSB-1 may be an important regulator of aggressive metastatic disease in hormone receptor-negative breast cancer. WSB-1 could therefore represent a novel regulator and therapeutic target for secondary breast cancer in these patients.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Breast Neoplasms / genetics*
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / mortality
  • Breast Neoplasms / pathology*
  • Cells, Cultured
  • Female
  • Gene Expression Regulation, Neoplastic
  • Human Umbilical Vein Endothelial Cells / metabolism
  • Humans
  • Intracellular Signaling Peptides and Proteins
  • MCF-7 Cells
  • Mice
  • Mice, Nude
  • Neoplasm Metastasis
  • Proteins / physiology*
  • Receptor, ErbB-2 / genetics
  • Receptor, ErbB-2 / metabolism
  • Receptors, Estrogen / genetics
  • Receptors, Estrogen / metabolism
  • Survival Analysis

Substances

  • Intracellular Signaling Peptides and Proteins
  • Proteins
  • Receptors, Estrogen
  • WSB1 protein, human
  • ERBB2 protein, human
  • Receptor, ErbB-2