Early mortality in acute promyelocytic leukemia: Potential predictors

Oncol Lett. 2018 Apr;15(4):4061-4069. doi: 10.3892/ol.2018.7854. Epub 2018 Jan 24.

Abstract

Acute promyelocytic leukemia (APL) is a rare leukemia characterized by the balanced reciprocal translocation between the promyelocytic leukemia gene on chromosome 15 and the retinoic acid receptor α (RARα) gene on chromosome 17, and accounts for 10-15% of newly diagnosed acute myeloid leukemia each year. The combined use of all-trans retinoic acid and arsenic trioxide (ATO) as primary therapy has markedly improved the survival rate of patients with APL. Mortality in the first 30 days following therapy remains a major contribution to treatment failure. In the present study, published data was reviewed with a focus on the factors associated with early mortality. When treated with ATO as a primary treatment, the fms-like tyrosine kinase-internal tandem deletion has no impact on early mortality. Low lymphoid enhancer binding factor-1 expression may be a reliable marker for early mortality and the target of therapy if it could be proven by further studies. Cluster of differentiation (CD)56+ and CD34+/CD2+ may be candidates to select high-risk patients. The risk of early mortality in APL still cannot be predicted via the cell surface makers, despite multiple studies on their prognostic significance. Typically, a complex translocation did not alter the survival rate in patients with APL; however, if an abnormal karyotype [e.g., Ide(17), ZBTB16/RARα and STAT5B/RARα] appeared singularly or as part of a complex mutation, there is a high possibility of early mortality if clinicians are unable to identify or monitor it.

Keywords: Fms-like tyrosine kinase 3 gene; acute promyelocytic leukemia; complex karyotype; early mortality; immunophenotyping; lymphoid enhancer binding factor-1; microgranular variant.