Mitochondrial calcium uptake in organ physiology: from molecular mechanism to animal models

Pflugers Arch. 2018 Aug;470(8):1165-1179. doi: 10.1007/s00424-018-2123-2. Epub 2018 Mar 15.

Abstract

Mitochondrial Ca2+ is involved in heterogeneous functions, ranging from the control of metabolism and ATP production to the regulation of cell death. In addition, mitochondrial Ca2+ uptake contributes to cytosolic [Ca2+] shaping thus impinging on specific Ca2+-dependent events. Mitochondrial Ca2+ concentration is controlled by influx and efflux pathways: the former controlled by the activity of the mitochondrial Ca2+ uniporter (MCU), the latter by the Na+/Ca2+ exchanger (NCLX) and the H+/Ca2+ (mHCX) exchanger. The molecular identities of MCU and of NCLX have been recently unraveled, thus allowing genetic studies on their physiopathological relevance. After a general framework on the significance of mitochondrial Ca2+ uptake, this review discusses the structure of the MCU complex and the regulation of its activity, the importance of mitochondrial Ca2+ signaling in different physiological settings, and the consequences of MCU modulation on organ physiology.

Keywords: Animal models; Heart; Mitochondria Ca2+ uptake; Neurons; Pancreatic β cells; Skeletal muscle.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Calcium / metabolism*
  • Calcium Channels / metabolism
  • Calcium Signaling / physiology
  • Humans
  • Mitochondria / metabolism*
  • Mitochondria / physiology
  • Models, Animal
  • Sodium-Calcium Exchanger / metabolism

Substances

  • Calcium Channels
  • Sodium-Calcium Exchanger
  • Calcium