Used nuclear fuel reprocessing represents a unique challenge when dealing with radionuclides such as isotopes of 85Kr and 129I2 due to their volatility and long half-life. Efficient capture of 129I2 ( t1/2 = 15.7 × 106 years) from the nuclear waste stream can help reduce the risk of releasing I2 radionuclide into the environment and/or potential incorporation into the human thyroid. Metal organic frameworks have the reported potential to be I2 adsorbents but the effect of water vapor, generally present in the reprocessing off-gas stream, is rarely taken into account. Moisture-stable porous metal organic frameworks that can selectively adsorb I2 in the presence of water vapor are thus of great interest. Herein, we report on the I2 adsorption capacity of two microporous metal organic frameworks at both dry and humid conditions. Single-crystal X-ray diffraction and Raman spectroscopy reveal distinct sorption sites of molecular I2 within the pores in proximity to the phenyl- and phenol-based linkers stabilized by the I···π and I···O interactions, which allow selective uptake of iodine.
Keywords: MOF; Raman spectroscopy; iodine; organic framework; porous structures; radioactive waste; single crystal X-ray diffraction; used nuclear fuel.