The need for alternatives to animal use in pyrogen testing has been driven by the Three Rs concept. This has resulted in the inclusion of the monocyte activation test (MAT) in the European Pharmacopoeia, 2010. However, some technical and regulatory obstacles must be overcome to ensure the effective implementation of the MAT by the industry, especially for the testing of biological products. The yellow fever (YF) vaccine (17DD-YFV) was chosen for evaluation in this study, in view of: a) the 2016-2018 outbreak of YF in Brazil; b) the increase in demand for 17DD-YFV doses; c) the complex production process with live attenuated virus; d) the presence of possible test interference factors, such as residual process components (e.g. ovalbumin); and e) the need for the investigation of other pyrogens that are not detectable by the methods prescribed in the YF vaccine monograph. The product-specific testing was carried out by using cryopreserved and fresh whole blood, and IL-6 and IL-1β levels were used as the marker readouts. After assessing the applicability of the MAT on a 1:10 dilution of 17DD-YFV, endotoxin and non-endotoxin pyrogens were quantified in spiked batches, by using the lipopolysaccharide and lipoteichoic acid standards, respectively. The quantitative analysis demonstrated the correlation between the MAT and the Limulus amoebocyte lysate (LAL) assays, with respect to the limits of endotoxin recovery in spiked batches and the detection of no pyrogenic contamination in commercial batches of 17DD-YFV. The data demonstrated the applicability of the MAT for 17DD-YFV pyrogen testing, and as an alternative method that can contribute to biological quality control studies.
2018 FRAME.