Novel magnetic ion-imprinted polymer was prepared by use of SBA-15 as functional monomer, ethylene glycol dimethacrylate as cross linker, diphenylcarbazide as ligand, and Cd2+, Cu2+, and Ni2+ as the template of ion source. The adsorption capacity of the synthesized adsorbent was 111, 95, and 87 mg g-1, respectively for cadmium, copper, and nickel. The selectivity of the adsorbents examined in the presence of different cations including Na+, K+, Ca2+, Mg2+, Zn2+, Co2+, Fe2+, Mn2+, Hg2+, and Pb2+ indicated that the synthesized ion-imprinted adsorbents were highly selective for the appropriate cations. Kinetic studies indicated that the adsorption process was very fast and the equilibrium was established within 5 min and followed the pseudo-second-order kinetic model. The used ion-imprinted adsorbent was readily regenerated by elution with 2 M HNO3, and the regenerated adsorbent retained most of its initial capacity. The calculated thermodynamic parameters indicated that the adsorption process was spontaneous and endothermic.
Keywords: Functionalization; Ion-imprinted polymer; Magnetic core-shell; Mesoporous silica; Selectivity; Separation.