Strong Anisotropic Spin-Orbit Interaction Induced in Graphene by Monolayer WS_{2}

Phys Rev Lett. 2018 Mar 9;120(10):106802. doi: 10.1103/PhysRevLett.120.106802.

Abstract

We demonstrate strong anisotropic spin-orbit interaction (SOI) in graphene induced by monolayer WS_{2}. Direct comparison between graphene-monolayer WS_{2} and graphene-bulk WS_{2} systems in magnetotransport measurements reveals that monolayer transition metal dichalcogenide can induce much stronger SOI than bulk. Detailed theoretical analysis of the weak antilocalization curves gives an estimated spin-orbit energy (E_{so}) higher than 10 meV. The symmetry of the induced SOI is also discussed, and the dominant z→-z symmetric SOI can only explain the experimental results. Spin relaxation by the Elliot-Yafet mechanism and anomalous resistance increase with temperature close to the Dirac point indicates Kane-Mele SOI induced in graphene.