Increasing evidence has indicated the important roles of long non-coding RNAs (lncRNAs) in tumorigenesis and cellular progression, including prostate cancer. In this study, we aim to investigate the expression level of SNHG7 and its biological functions on prostate cancer cells. Results indicated that SNHG7 expression was significantly up-regulated in prostate cancer tissue and cell lines. Besides, the overexpression of SNHG7 was closely correlated with the poor prognosis. In vitro and in vivo, experiments demonstrated that SNHG7 knockdown markedly inhibited prostate cancer proliferation and cycle-related protein (CDK4, CDK6, Cyclin D1), induced cell cycle arrest at G0/G1 phase and suppressed tumor growth. Moreover, miR-503 was predicted by bioinformatics tools and validated using luciferase reporter assay to both directly inhibited SNHG7 and Cyclin D1 expression by targeting their RNA 3'-UTR. In conclusion, results present that SNHG7 regulates the cycle progression and acts as an oncogenic gene in the prostate cancer tumorigenesis via miR-503/Cyclin D1 pathway, revealing the vital role of lncRNA/miRNA/mRNA axis in prostate cancer carcinogenesis.
Keywords: Cyclin D1; Long noncoding RNA; Prostate cancer; SNHG7; miR-503.
Copyright © 2018 Elsevier Masson SAS. All rights reserved.