Myopathies comprise a heterogeneous group of disorders characterized by variable phenotypes. The increasing use of next-generation sequencing allows identification of the causative genes in a much higher percentage of patients with hereditary muscle disorders and also illustrates a considerable degree of overlap with other clinical entities, including connective tissue disorders. Here, we present a 14-year-old German patient who was initially suspected to suffer from myopathy based on his clinical, radiological, and muscle biopsy findings. Exome sequencing revealed a novel homozygous nonsense mutation in the SLC39A13 gene, causative for spondylocheiro dysplastic Ehlers Danlos syndrome (SCD-EDS), suggesting a connective tissue disorder. Including our patient, only 9 affected individuals from 4 families have been described for SCD-EDS so far. The previously reported patients did not show obvious evidence of myopathy, suggesting a broader clinical presentation than originally suspected. We summarize herein the current knowledge on clinical features as well as pathophysiological pathways for this rare connective tissue disease and discuss the high degree of clinical overlap between myopathic and connective tissue disorders.
Keywords: Exome sequencing; Next-generation sequencing; SCD-EDS; SLC39A13; Spondylocheirodysplasia EDS-like syndrome; ZIP13.