Computer vision analysis captures atypical attention in toddlers with autism

Autism. 2019 Apr;23(3):619-628. doi: 10.1177/1362361318766247. Epub 2018 Mar 29.

Abstract

To demonstrate the capability of computer vision analysis to detect atypical orienting and attention behaviors in toddlers with autism spectrum disorder. One hundered and four toddlers of 16-31 months old (mean = 22) participated in this study. Twenty-two of the toddlers had autism spectrum disorder and 82 had typical development or developmental delay. Toddlers watched video stimuli on a tablet while the built-in camera recorded their head movement. Computer vision analysis measured participants' attention and orienting in response to name calls. Reliability of the computer vision analysis algorithm was tested against a human rater. Differences in behavior were analyzed between the autism spectrum disorder group and the comparison group. Reliability between computer vision analysis and human coding for orienting to name was excellent (intra-class coefficient 0.84, 95% confidence interval 0.67-0.91). Only 8% of toddlers with autism spectrum disorder oriented to name calling on >1 trial, compared to 63% of toddlers in the comparison group (p = 0.002). Mean latency to orient was significantly longer for toddlers with autism spectrum disorder (2.02 vs 1.06 s, p = 0.04). Sensitivity for autism spectrum disorder of atypical orienting was 96% and specificity was 38%. Older toddlers with autism spectrum disorder showed less attention to the videos overall (p = 0.03). Automated coding offers a reliable, quantitative method for detecting atypical social orienting and reduced sustained attention in toddlers with autism spectrum disorder.

Keywords: autism spectrum disorders; behavioral measurement; development; pre-school children; social cognition and social behavior.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Attention / physiology*
  • Autism Spectrum Disorder / physiopathology*
  • Child, Preschool
  • Computers
  • Female
  • Humans
  • Infant
  • Male
  • Photic Stimulation / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity